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Steady, spatial, algebraically growing eigenfunctions are now known to occur in sev-
eral important classes of boundary-layer flow, including two-dimensional hypersonic
boundary layers and more recently in Blasius boundary layers subject to three-
dimensional linearized disturbances, and in more general three-dimensional boundary
layers. These spatial eigensolutions are particularly important and intriguing, given
that they exist within the broad limits of the classical steady boundary-layer approx-
imation, and as such are independent of Reynolds number.

In this paper we make the natural extension to these previous (stability) analyses
by incorporating the effects of unsteadiness into the model for treating disturbances
to a quite general class of similarity-type boundary-layer flows. The flow disturbances
are inherently non-parallel, but this effect is properly incorporated into the analysis.

A further motivation for this paper is that Duck et al. (1999, 2000) have shown
that by permitting a spanwise component of flow within a boundary layer of the
appropriate form (in particular, growing linearly with the spanwise coordinate), it
is found that new families of solutions exist – even the Blasius boundary layer has
a three-dimensional ‘cousin’. Therefore a further aim of this paper is to assess the
stability of the different solution branches, using the ideas introduced in this paper,
to give some clues as to which of the solutions may be encountered experimentally.

Several numerical methods are presented for tackling various aspects of the prob-
lem. It is shown that when algebraically growing, steady eigensolutions exist, their
effect remains important in the unsteady context. We show how even infinitesimal,
unsteady flow perturbations can provoke extremely large-amplitude flow responses,
including in some cases truly unstable flow disturbances which grow algebraically
downstream without bound in the linear context. There are some interesting parallels
suggested therefore regarding mechanisms perhaps linked to bypass transition in an
important class of boundary-layer flows.

1. Introduction
Great strides have been made in recent decades in understanding various boundary-

layer transition processes. At high Reynolds numbers we have quite a good under-
standing and description of the formation of Tollmien–Schlichting waves and of the
earlier stages of the associated transition process, due in part to multi-layered asymp-
totic analysis (Smith 1979a, b for example). A quite recent, comprehensive summary
of work in this area can be found in Cowley & Wu (1994).

At finite Reynolds numbers, in addition to direct numerical simulations (for example
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Rist & Fasel 1995), the parabolized stability equations (Bertolotti 1991; Herbert &
Lin 1993) provide a rapid and reliable means of flow analysis, including non-parallel
effects due to boundary-layer growth, albeit using a procedure which strictly is non-
rational (not all the stages in the procedure can be fully justified from a strict,
theoretical standpoint).

Luchini (1996) found that algebraic growth within a Blasius boundary layer is
possible, with spanwise periodic disturbances (of large wavelength compared with
the boundary-layer thickness). Duck, Stow & Dhanak (1999, 2000) showed how such
growth occurs within a broad range of three-dimensional boundary layers, subject
to disturbances that grow linearly in the spanwise direction. Indeed this type of
phenomenon is not completely new, but was found some time ago in certain types
of hypersonic boundary layers by Neiland (1970), Mikhailov et al. (1971) and Brown
& Stewartson (1975). It was suggested by Luchini (1996) that this mechanism is a
good candidate for bypass transition. The area of ‘algebraic’ growth of disturbances
has been the subject of quite detailed study in recent times, starting principally with
Landahl (1980), and followed by Hultgren & Gustavsson (1981), Butler & Farrell
(1992), Reddy & Henningson (1993), Trefethen et al. (1993), and others. There is
now much evidence that three-dimensional perturbations can provoke a significantly
different response inside a two-dimensional boundary layer than two-dimensional
flow perturbations, in contrast to the classical result of Squire (1933). Two very recent
papers on the linear, algebraic growth within Blasius boundary layers by Andersson,
Berggren & Henningson (1999) and Luchini (2000) have extended the earlier ideas
of Luchini (1996) to disturbances of wavelengths comparable with the boundary-
layer thickness. Of particular interest in these studies is the concept of optimal
perturbations, i.e. determining the initial perturbations that lead to the maximum
energy growth. Andersson et al. (1999) and Luchini (2000) also showed that this
maximum growth was achieved at a finite spanwise wavenumber (based on the
boundary-layer thickness).

The non-parallel nature of most boundary-layer flows further complicates matters,
and has also been the subject of much attention, and indeed controversy. Leaving
aside direct numerical simulations already mentioned (which undoubtedly do have
an important role to play, although at some computational cost), several approaches
have been adopted to treat these effects. One approach was followed by Barry & Ross
(1970) and Chen, Sparrow & Tsou (1971) and leads to a form of the Orr–Sommerfeld
equation. A second, more successful approach was that of Bouthier (1972, 1973) and
Saric & Nayfeh (1975), although again this approach is not completely justifiable
from the strict theoretical point of view. The aforementioned parabolized stability
equations can of course also treat non-parallel effects, and indeed the downstream
development of the flow is a key element of this technique.

One aim of this paper is to extend the work of Luchini (1996) and of Duck et al.
(1999, 2000) to include unsteady effects. These significantly alter the nature of the flow
response, and also lead naturally to several of the ideas and concepts mentioned above,
including transient/algebraic growth and non-parallel flow effects, flow processes that
to a degree become intermingled in problems of this type. Luchini (2000) does present
some unsteady results for his class of perturbation to the Blasius boundary layer,
in particular showing that the maximum energy growth/optimal disturbances occur
at zero frequency. In the present paper we are able to show that for our class of
problem, the zero-frequency case is somewhat special (certainly it may be regarded
as a singular limit for our class of disturbance).

In Dhanak & Duck (1997) and Duck et al. (2000) it was shown that for free-stream
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flows of the form xn (x being a measure of distance from some leading edge, at which
the boundary layer first forms), in addition to the classical Falkner–Skan (Rosenhead
1966) class of self-similar boundary-layer flows, the three-dimensional boundary-layer
equations also admit three-dimensional, similarity-type solutions, which involve a
crossflow component that grows linearly in the crossflow direction, even if the imposed
conditions do not explicitly force crossflow effects (the two other velocity components
are taken to be independent of the crossflow coordinate); even Blasius flow has a
three-dimensional ‘cousin’ (Dhanak & Duck 1997). It is of course well known that the
two-dimensional Falkner–Skan problem exhibits dual solutions when n < 0 (Hartree
1937), with the additional solution exhibiting reversed flow. Craven & Peletier (1972)
and Oskam & Veldman (1982) have found additional Falkner–Skan-type solutions at
extreme values of n, although these are generally oscillatory in nature; we conclude
therefore that the nature of these additional solutions suggests they will be difficult to
observe experimentally. On the other hand, the three-dimensional, additional solutions
of Dhanak & Duck (1997) and Duck et al. (2000) are relatively benign in nature,
with the crossflow velocity component generally taking on a jet-like profile.

At this point it is probably worth raising the issue of the growth of the crossflow
velocity component in the spanwise direction, z. This obviously becomes unbounded
as |z| → ∞; certainly one interpretation of the solution is that it represents a local
solution behaviour (in powers of z, as z → 0), very much in the same way as Hiemenz
flow (which itself becomes unbounded as |x| → ∞), is generally regarded as a localized
solution about an attachment point. Nonetheless, in the present analysis there is no
requirement that z be necessarily small. It is not our intention here to consider the
more global nature of the flow field, which would inevitably involve a full discussion
of the inviscid flow region (together with probably other viscous zones), thereby
losing the generic nature of the study. Rather we focus our attention on what may be
regarded as a generic problem involving a fully viscous boundary layer that admits
solutions of the aforementioned class.

We will study the effects of unsteady perturbations on general boundary-layer
flows possessing the spanwise behaviour just described and hence this work is also
applicable to the classical set of two-dimensional, self-similar, boundary-layer flows.
The disturbances to the flow are taken to be of the same form as the basic flow, i.e.
with a spanwise velocity component that grows linearly with the spanwise coordinate,
the other two velocity components being independent of this direction. The analysis
is fully rational, insofar as all steps can be justified on the basis of infinite Reynolds
number theory; as such, our analysis leads to Reynolds number independent results.
A further aim of this paper (in the light of the points raised above) is to attempt to
shed some light on to which of the various possible solutions are likely to be observed
experimentally, utilizing stability arguments of the class under consideration.

The outline of the paper is as follows. In § 2 we formulate the problem, includ-
ing defining the class of base states we consider and also the nature of the flow
perturbations. In § 3 the special case ‘n = 1’ is considered, which corresponds to
the stagnation point flow, in which it has been shown (Davey & Schofield 1967;
Schofield & Davey 1967; Duck et al. 2000) that two solutions can exist, the first
being the well-known two-dimensional solution of Hiemenz (Rosenhead 1966), the
second a three-dimensional flow. For this choice of n a good deal of simplification
is possible, since the perturbation equations can be shown to lose their streamwise
spatial dependence, and even the effects of nonlinear perturbations are relatively
straightforward to analyse. In § 4, the effects of an impulsive perturbation on the
boundary layer (for general values of the velocity parameter n) are considered; in this
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case the similarity form is not applicable to the flow perturbations, and consequently
there is a significant complication to the analysis and solution. In cases where steady,
leading-edge eigenstates exist (see above), the computation of unsteady perturbations
proves difficult. This leads to § 5, involving temporally periodic flow perturbations,
which are fully analysed. On the basis of this work, a spectral method is developed
which overcomes certain of the numerical difficulties found in § 4. In § 6 a further
class of spatio-temporal flow perturbation is discussed, which sheds further light on
the results of § 5 (and some of the difficulties encountered in § 4). Our concluding
discussion may be found in § 7.

2. Formulation
Consider the classical three-dimensional, unsteady, incompressible boundary-layer

formulation. We take L(x, y, z) to be the orthogonal, dimensional coordinates, where
L is some reference lengthscale (defined, typically, by the spatial scale of the free-
stream velocity variation), and where x is measured in the direction of the free stream,
y is measured normal to a (flat) surface, which lies in y = 0, x > 0; dimensional
time is written (L2/ν)t, ν being the kinematic viscosity. The corresponding velocity
components (non-dimensionalized with respect to the typical free-stream velocity U∞)
are then written

u = U∗(x, Y , z, t), v = Re−1/2V ∗(x, Y , z, t), w = W ∗(x, Y , z, t). (2.1)

Here we have set Y = Re1/2y to be the usual boundary-layer coordinate, where the
Reynolds number Re = U∞L/ν, which is taken to be large throughout. The standard
(classical) boundary-layer equations may then be written in the form

U∗t +U∗U∗x + V ∗U∗Y +W ∗U∗z = U∗Y Y − P ∗x , (2.2)

W ∗
t +U∗W ∗

x + V ∗W ∗
Y +W ∗W ∗

z = W ∗
Y Y − P ∗z , (2.3)

U∗x + V ∗Y +W ∗
z = 0, (2.4)

P ∗Y = 0. (2.5)

The dimensional pressure has been written ρ∞U2∞P ∗, ρ∞ being the density of the
(incompressible) fluid. Following the recent work of Duck et al. (1999, 2000), we now
seek solutions to this set of equations in the form

U∗ = Û(x, Y , t), (2.6)

V ∗ = V̂ (x, Y , t), (2.7)

W ∗ = zŴ (x, Y , t), (2.8)

P ∗ = P (x, t). (2.9)

This obviously restricts the class of flows to be considered, but nonetheless the
resulting class is important from a practical (as well as theoretical) point of view. In
particular (2.6)–(2.9) above assume the following:

(i) a linear increase of the crossflow in the crossflow direction (z);
(ii) independence of the other velocity components of the crossflow direction;
(iii) independence on the pressure of z, implying that the crossflow velocity vanishes

outside the boundary layer (i.e. in the free stream).
Some discussion of this class of flow (and its significance) has already been given in
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the previous section, but it does encompass a wide range of boundary-layer flows
(including all the two-dimensional classical boundary-layer flows).

To proceed we introduce a new set of dependent and independent variables as
follows:

Û = xnU(ξ, η, t), (2.10)

V̂ =
x(n−1)/2

√
2

[(1− n)ηU − Φ], (2.11)

Ŵ =
xn−1

√
2
W =

xn−1

2
[(1− n)U −Ψ ], (2.12)

where

η =
Y√
2ξ
, (2.13)

ξ = x(1−n)/2. (2.14)

It is also useful (as in Duck et al. 1999, 2000) to introduce a modified vorticity
function, namely

θ = Ψη. (2.15)

The quantities Φ(ξ, η, t) and Ψ (ξ, η, t) may be regarded as forms of vector potential. In
terms of these new variables, the boundary-layer equations (2.2)–(2.5) may be written
in the form

Uηη + 2nf2 + ξ(1− n)ffξ + 2ξ2ft − 2ξ2Ut + ΦUη

−ξ(1− n)UUξ − 2nU2 = 0, (2.16)

2U + (1− n)ξUξ = Φη +Ψ, (2.17)

θηη − 2(1− n2)UUη + Φθη +Ψθ + 2Uθ − 2ξ2θt

+(n− 1)ξ[−θUξ +Uθξ +ΨξUη] = 0, (2.18)

together with (2.15). The free-stream conditions are that

U → f(ξ, t), Ψ → (1− n)f(ξ, t), θ → 0 (2.19)

as η → ∞. The condition on Ψ ensures zero crossflow velocity in the free stream,
whilst f(ξ, t) denotes the streamwise and temporal variation of the free stream. The
free-stream condition for Φ may be deduced from (2.17) together with (2.19), leading
to

Φη → (1 + n)f + (1− n)ξfξ (2.20)

as η → ∞; this condition was generally utilized explicitly in our numerical scheme,
since it was found beneficial to work with the η-differentiated form of (2.17), i.e. a
second-order equation for Φ.

It is possible to combine (2.15) with (2.18), and then to integrate with respect to η,
to eliminate θ, and this leads instead to the equation

Ψηη − (1− n2)U2 + ΦΨη − 2ξ2Ψt +Ψ 2 + (n− 1)ξUΨξ

= −2ξ2(1− n)ft + 2n(n− 1)f2 − (n− 1)2ξffξ, (2.21)

which offers some advantages over the previous system, and is employed later. It is
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important to note that for two-dimensional flows (for which Ŵ ≡ 0), then

Ψ = (1− n)U, (2.22)

θ = (1− n)Uη, (2.23)

in which case it is possible to show that (2.18) is entirely consistent with (2.16), even
when the solution is dependent on ξ and t and is nonlinear. In Duck et al. (2000) a
detailed study of steady, similarity solutions to the problem, corresponding to

Û = xnU0(η), V̂ = x(n−1)/2V0(η), Ŵ =
xn−1

√
2
W0(η) (2.24)

was made; the governing system in this case is (2.15)–(2.18), with ξ = 0. Figure 1
shows distributions of these similarity base-flow states taken from the study of Duck
et al. (2000), in particular the variations of U0η(0), W0η(0), θ0(0) with the similarity
parameter n. The W0(η) ≡ 0 solutions correspond to the familiar Falkner–Skan family
of solutions (Rosenhead 1966), whilst the additional solutions are three-dimensional
in nature. The significance of the dashed lines will be explained shortly, but at this
stage they serve as a useful means of correlating the three distributions shown in
figure 1. Note also the (small) solution branch close to n = 0−, making a total of six
solutions in this regime of n.

In Duck et al. (2000) steady spatial perturbations to the above similarity states were
considered (following on from the work of Duck et al. 1999). In particular it is found
that standard, parabolic downstream-marching techniques, as commonly employed in
boundary-layer computations are, more often than not, inappropriate for problems
of this type; the reason for this can be illustrated as follows. Suppose we take one of
the basic similarity states as detailed above. We then seek linearized eigensolutions
close to the leading edge as follows (an approach similar to that devised by Libby &
Fox 1963; Chen & Libby 1968):

U(ξ, η) = U0(η) + ξλũ+ · · · , Φ(ξ, η) = Φ0(η) + ξλφ̃+ · · · ,
Ψ (ξ, η) = Ψ0(η) + ξλψ̃ + · · · , θ(ξ, η) = θ0(η) + ξλθ̃ + · · · .

}
(2.25)

In the above it is assumed that Re {(1− n)λ} > 0 for consistency, such that the
perturbation is small compared with the basic state. Substitution of these into (2.15)–
(2.18), discarding the unsteady terms: leads to the following system determining the
perturbation quantities:

2ũ+ (1− n)λũ = φ̃η + ψ̃, (2.26)

ũηη = 4nU0ũ+ λ(1− n)U0ũ− φ̃U0η − ũηΦ0, (2.27)

θ̃ = ψ̃η, (2.28)

θ̃ηη − 2(1− n2)[U0ũη + ũU0η] + θ̃ηΦ0 + θ0ηφ̃+ ψ̃θ0 + 2ũθ0 +Ψ0θ̃ + 2U0θ̃

+(n− 1)λ{−θ0ũ+U0θ̃ + ψ̃U0η} = 0, (2.29)

subject to the boundary conditions

ũ(0) = φ̃(0) = ψ̃(0) = 0, ũ, ψ̃, θ̃ → 0 as η →∞. (2.30)

Solution of this eigenvalue problem reveals that states with Re {(1− n)λ} > 0 do
exist, and basic flows which admit such states are indicated by broken lines in figure 1.
The existence of these leading-edge eigenstates has important repercussions (as will be
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Figure 1. Base flow states.

seen later when considering unsteady disturbances) in addition to rendering standard
parabolic marching schemes ill-posed (see below). As a result of performing a number
of computations of this type on the base flows under consideration, it is possible to
make the following general observations:

(i) At most only one solution exists with no values of λ such that Re {(1− n)λ} > 0
for any value of n.

(ii) It is generally the solution with largest value of U0η(0) that has no values of
λ such that Re {(1− n)λ} > 0; witness the crossover at n = 0.167 . . . where there is
a changeover in the ‘stability’ of the solution branches. As n increases from below
this value, the three-dimensional solution is initially ‘stable’ (or more precisely has
no Re {(1− n)λ} > 0), the two-dimensional solution branch is initially ‘unstable’ (or
more precisely does have a Re {(1− n)λ} > 0), and then there is a reversal of the
‘stability’ of these branches beyond this value of n.

(iii) Most (all ?) of the λ are real.
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(iv) In regions of reversed flow in the streamwise direction (U0η(0) < 0) many,
probably an infinite number of, values of λ exist, such that Re {(1− n)λ} > 0; this
observation seems consistent with the problem being truly elliptic in these regions.

(v) It is worth pointing out that the quantity (1 − n)λ is more significant than λ
per se, since the form ξλ translates into the physical coordinate as xλ(1−n)/2, and so
it is the quantity (1− n)λ that actually controls the downstream development of the
flow. It should be noted that (1− n)λ remains finite as n→ 1.

From figure 1 (and Luchini 1996; Duck et al. 2000) we see that the familiar Blasius
state does exhibit a positive value of λ. The existence of these steady eigensolutions
obviously complicates the solution process, particularly those involving streamwise
distributions of perturbation excitation, as considered by Duck et al. (1999), but
they showed how such difficulties could be overcome using a quasi-elliptic approach
to the problem, implementing downstream (in addition to upstream) conditions,
just the sort of procedure that would be employed on an elliptic scheme, using
second-order central differences. Under normal circumstances the dual specification
of upstream and downstream conditions on a parabolic partial differential equation
would obviously lead to an over-specified problem. The correctness of this approach
however when the aforementioned steady, leading-edge eigenstates exist may be
understood conceptually as follows, taking (to simplify the arguments) the linearized,
steady disturbance system. A standard downstream marching procedure involving
external forcing, of general form (including that described here), will lead inevitably to
unbounded (algebraic) growth downstream. Assuming that the external forcing decays
downstream, this growth downstream will be of the form ξλ (such computations have
been performed by the authors and concur with this statement). The perturbation
downstream therefore takes on the form of the growing eigensolution. Thus (recalling
the linear nature of this problem) if we subtract off the appropriate ‘amount’ of
eigensolution, we can achieve a state which has zero perturbation at the leading edge
and decays downstream. The problem is strongly reminiscent of triple-deck/free-
interaction problems (e.g. Stewartson & Williams 1969) in which an eigensolution
exists which grows downstream; standard marching procedures based on the linearized
version of problems of this type lead, in general, to exponentially growing downstream
growth, but the addition of the correct ‘amount’ of eigensolution upstream (i.e.
upstream influence) is sufficient to lead to a downstream-decaying solution. Equally,
the two-dimensional supersonic, triple-deck problem is well known to be stable
according to stability analyses (see for example Zhuk & Ryzhov 1978; Terent’ev
1978; Ryzhov & Zhuk 1980; Duck 1985). The ‘quasi-elliptic’ approach of Duck
et al. (1999) may be regarded as an alternative to the ‘eigensolution subtraction’
technique described above, and automatically picks the coefficient of the leading-edge
eigensolution to ensure downstream decay (when appropriate).

The recent interesting work of Andersson et al. (1999) and Luchini (2000) tackles an
equally valid, related problem, from a different angle. Rather than studying the effects
of a forcing, with a streamwise distribution, they determined the initial perturbation
(used to trigger the flow disturbance) that leads to the maximum energy growth.

In this paper we shall be primarily concerned with small-amplitude, unsteady
perturbations to similarity base flows of the type described above (see (2.24)). We
therefore seek linearized unsteady spatially evolving solutions to the basic similarity
states, writing

U = U0(η) + δũ(η, ξ, t) + · · · , (2.31)

Φ = Φ0(η) + δφ̃(η, ξ, t) + · · · , (2.32)
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Ψ = Ψ0(η) + δψ̃(η, ξ, t) + · · · , (2.33)

θ = θ0(η) + δθ̃(η, ξ, t) + · · · , (2.34)

f = 1 + δf̃ + · · · , (2.35)

where δ is a (small) amplitude parameter. The system governing the perturbation
(tilde) quantities to leading order may then be written in the form (neglecting the
O(δ2) terms)

ũηη + 4nf̃ + ξ(1− n)f̃ξ + 2ξ2f̃t − 2ξ2ũt + φ̃U0η + Φ0ũη

−ξ(1− n)U0ũξ − 4nU0ũ = 0, (2.36)

2ũ+ (1− n)ξũξ = φ̃η + ψ̃, (2.37)

θ̃ = ψ̃η, (2.38)

θ̃ηη − 2(1− n2)(U0ũη +U0ηũ) + φ̃θ0η + Φ0θ̃η +Ψ0θ̃ + ψ̃θ0 + 2U0θ̃

+2ũθ0 − 2ξ2θ̃t + (n− 1)ξ[−θ0ũξ +U0θ̃ξ + ψ̃ξU0η] = 0. (2.39)

Note that (2.39) can usefully be replaced by

ψ̃ηη − 2(1− n2)U0ũ+ Φ0ψ̃η +Ψ0ηφ̃− 2ξ2ψ̃t + 2Ψ0ψ̃ + (n− 1)ξU0ψ̃ξ

= −2ξ2(1− n)f̃t + 4n(n− 1)f̃ − (n− 1)2ξf̃ξ. (2.40)

The boundary conditions are then that

ũ(η = 0) = φ̃(η = 0) = ψ̃(η = 0) = 0, (2.41)

ũ(η →∞)→ f̃, ψ̃(η →∞)→ (1− n)f̃, θ̃(η →∞)→ 0. (2.42)

Notice here that the inclusion of unsteadiness inevitably results in spatial varia-
tions, on account of the multiplicative ξ2 term that occurs in conjunction with the
acceleration terms – the similarity form which exists for the steady base states is com-
pletely destroyed. We note that in the work related to (far-field) corner flows, Ridha
(1992) considered a form of temporal, linear stability which amounts to the system
(2.36)–(2.40), but with the spatial (ξ) terms neglected and with the ξ2 term multiplying
the time derivatives set equal to unity (in essence, amounting to a solution which is
dependent on t/ξ2 only). However, such a procedure, in general, cannot be justified
from a rigorous point of view; but in the special case of n = 1 it turns out that a
good deal of simplification occurs, even with the full nonlinear system (2.15)–(2.18).
This case is considered in the following section; discussion of the other more general
values of n is deferred until later.

3. The special case n = 1

As noted in the previous section, as n→ 1, the quantity (1− n)λ remains bounded.
However, for the special case of n = 1 we may study an alternative class of disturbance
by means of merely setting n = 1 in (2.15)–(2.18), which leads to a problem where the
ξ-derivatives may be neglected because of the (1− n) factor. In the resulting system,
since ξ only appears as a multiplicative factor on the acceleration terms, we may take
ξ = 1 without any loss of generality, equivalent to considering perturbations which
are dependent on t/ξ2 (only), thereby reducing the dimension of the problem by one.
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Indeed, this is related to the class of disturbance considered in § 6 for general values
of n.

When n = 1, the two base states are the well-known two-dimensional Hiemenz
solution (Rosenhead 1966) whilst the three-dimensional solution corresponds to that
found and discussed by Davey & Schofield (1967) and Schofield & Davey (1967). The
effects on both solutions of a nonlinear, unsteady perturbation in the free stream may
be studied, which we carried out by means of the following free-stream behaviour for
the streamwise velocity:

f(t) = 1 + γte−t, (3.1)

corresponding to a perturbation which grows from the undisturbed state (f(0) = 1)
and then ultimately decays back to this undisturbed state; γ represents the amplitude
of the flow perturbation, γ > 0 representing an initial flow acceleration, followed
by a retardation, γ < 0 representing an initial flow retardation, followed by an
acceleration. The system was then solved using a second-order Crank–Nicolson
method in t, together with a second-order, central, finite-differencing scheme in η.
Figure 2(a) shows the temporal variation of the streamwise component of wall shear
(Uη (η = 0)) and the ‘displacement thickness’ (δ∗ = [Φ − ηΦη]η→∞) when the two-
dimensional solution is perturbed, with γ = −1 in (3.1) above. This clearly reveals
the flow ultimately reverting to the original, two-dimensional state; in this case the
crossflow component of wall shear Wη (η = 0) ≡ 0, the flow thereby remaining
two-dimensional.

The corresponding results obtained when the amplitude parameter γ is taken to
be −5 are shown in figure 2(b). In this case instead of the flow reverting to the
original (undisturbed) state, although flow separation seems to occur quite regularly
(with Uη (η = 0) < 0), the indications are of a breakdown event, as evidenced in
the displacement-thickness temporal development. Further strong evidence of this
breakdown is shown in figure 3, in which streamwise velocity profiles (U(η; t)) are
shown, and clearly point to (i) an unbounded increase in this component of the fluid
velocity and (ii) a thickening of the boundary layer as the apparent breakdown is
approached (in this case at t = ts ≈ 3.11), in line with the growth in displacement
thickness observed in figure 2(b); intriguingly there is little evidence of singular
behaviour of any kind in the vicinity of the wall surface (witness the Uη (η = 0)
distribution in figure 2b).

In the light of the above observations, we now consider the terminal state of the
boundary layer as the breakdown time (ts) is approached. Indeed, this breakdown
is of the same class as that found in a related study by Riley & Vasantha (1989),
and closely follows the description provided by Banks & Zaturska (1979, 1981), the
key features of which resemble the three-dimensional work of Hall, Balakumar &
Papageorgiu (1992). In the present case the flow is entirely two-dimensional, and
so θ ≡ Ψ ≡ 0. The prominent feature of the breakdown is a thickening of the
boundary layer, indicating an inviscid mechanism, and this leads us to the following
leading-order behaviours:

U =
1

ts − t Û(σ) + · · · , (3.2)

Φ =
1

(ts − t)3/2
Φ̂(σ) + · · · , (3.3)

where

σ = (ts − t)1/2η = O(1), (3.4)
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Two-dimensional branch Three-dimensional branch

−1.5186 1.1084
−3.0627 −1.3036
−3.2666 −2.1657
−5.0781 −2.5326

Table 1. First four values of the eigenvalue Ω

corresponding to a boundary layer growing in thickness as (ts − t)−1/2. The leading-
order equation is then (utilizing Φ̂σ = 2Û),

Φ̂σσ(Φ̂+ σ)− 2Φ̂σ − Φ̂2
σ = 0. (3.5)

This system is equivalent to that of Banks & Zaturska (1979, 1981), and Hall et
al. (1992), who showed that a solution to this system exists which, as σ → 0, takes
the form Φ̂(σ) ∼ (1/3!)Φ̂σσσ(0)σ3, and thus when σ = O((ts − t)1/2), both Φ̂ and Û
become O(1), fully in line with our observations above regarding the fluid in the near-
wall region, which does not respond significantly to the flow breakdown mechanisms.
There is also a viscous layer in the wall region (which is passive, and of scale η = O(1)
in the light of our comments above), and another far out in the flow field (located at a
finite value of σ, say σ̄) which serves to blend the inviscid region with the free stream,
and is of O(1) thickness, based on the original η scale, but centred at η = σ̄(ts − t)−1/2.

Two further points of detail are worth making. First, for the class of free-stream
perturbation discussed above (i.e. (3.1)), whenever γ was taken to be positive it
was found that the flow always ultimately reverted to the original state. Secondly,
as discussed above, the flow experienced a breakdown for γ = −5, but not for
γ = −1; this suggests a threshold amplitude for breakdown, and indeed this was
found (numerically) to occur at γ ≈ −4.79.

We now move on to a consideration of the effects of the free-stream perturbation
(3.1) on the second n = 1 solution, namely the three-dimensional state of Davey &
Schofield (1967). The development of the streamwise wall shear stress (Uη (η = 0)),
crossflow shear stress (Wη (η = 0), in this case the flow is obviously three dimensional),
and displacement thickness (δ∗) is shown in figure 4(a), for the case γ = 1. Here the
perturbation to the flow does not lead to any breakdown, but neither does it lead to
the original three-dimensional state, but rather to the other (two-dimensional) state,
pointing to an instability of the former. Indeed, similar calculations were performed,
utilizing smaller (but positive) values of γ, and in all cases the ultimate, terminal state
was always the two-dimensional one.

The stability of the two states can easily be confirmed, perhaps more conclusively, by

taking n = 1 in (2.36)–(2.39) above, setting f̃ ≡ 0, writing (ũ, φ̃, ψ̃, θ̃) = (û(η), φ̂(η), ψ̂(η),

θ̂(η))eΩt, and then studying the resulting eigenvalue problem for Ω. The resulting
system was solved using second-order central differencing in η, and the eigenvalues
were then calculated using first a QZ approach to obtain initial estimates, which were
then refined using a local search procedure. The results for the first four eigenvalues for
both cases are shown in table 1. The occurrence of a single unstable eigenvalue in the
three-dimensional case is clearly seen. There were indeed many (stable) eigenvalues,
which appeared to be generally real in nature.

The above procedure is similar to that adopted for limiting corner flows by Ridha
(1992), who certainly reported a transition from one (the unstable) state to the other
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Figure 2. Effect of perturbing two-dimensional n = 1 base state: (a) γ = −1, (b) γ = −5.
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Figure 3. Streamwise velocity profiles, two-dimensional n = 1 base state
(γ = −5, equal time intervals).

(stable) state also. In that work other values of n were studied (although the solution
procedure is then ad hoc), but there does seem to be some correlation between base
states which exhibit steady leading-edge eigensolutions and the existence of unstable
temporal behaviour of this type, with spatial variations ignored. When n = 1 other
parallels also exist; as noted above, generally just one real and positive value of
(1−n)λ occurs (and the other, negative values of this quantity are also generally real),
and likewise when present, just one real and positive Ω seems to occur (along with
many stable and real temporal eigenvalues, i.e. Ω < 0).

We now consider the effect of introducing a perturbation of the form (3.1) with
negative γ onto the three-dimensional state. Figure 4(b) shows the temporal develop-
ment of the two wall shear stresses and the displacement thickness when γ = −1, and
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reveals a breakdown at t = ts ≈ 2.42, seemingly similar to that encountered with our
γ = −5 calculations on the two-dimensional state. However in figures 5(a) and 5(b)
we show U(η; t) and Φ(η; t) profiles, respectively, and these reveal that the streamwise
velocity component is apparently bounded as the time of breakdown is approached,
whereas the Φ-distribution becomes unbounded.

Intriguingly, it appears that the nature of this breakdown event is related to that
described above (in spite of the major differences in the character of the U profiles),
and is also a straightforward adaptation of that of Banks & Zaturska (1979, 1981)
and Hall et al. (1992). In our case, inspection of the governing equations, with the
assumption of a predominantly inviscid mechanism, leads us to expect the following
leading-order structure:

U = Û(σ) + · · · , (3.6)

Φ =
1

(ts − t)3/2
Φ̂(σ) + · · · , (3.7)

Ψ =
1

(ts − t)Ψ̂ (σ) + · · · , (3.8)

θ =
1

(ts − t)1/2
θ̂(σ) + · · · , (3.9)

where σ is defined (again) by (3.4). Substitution of (3.6)–(3.9) into the governing
equations leads us to conclude that

Ψ̂ = −Φ̂σ, (3.10)

θ̂ = Ψ̂σ, (3.11)

together with (3.5).
As a final point, other computations were performed using negative values of γ,

but of smaller magnitude, and these all ultimately terminated in a singular structure
of the type described above.
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4. General values of n
As noted in § 2, the temporally varying problem in general inevitably leads to a

spatially (ξ) varying problem also. We now consider (first) numerical solutions to
(2.36)–(2.39) (note from here on we focus our attention exclusively on linearized flow
perturbations). These were performed using standard second-order Crank–Nicolson
marching procedures in both ξ and t (second-order central finite differencing in η).
Figure 6 shows distributions for the streamwise component of perturbation wall shear
stress, i.e. τ̃ = ũη (η = 0) for the n = 0.35 two-dimensional (i.e. Falkner-Skan) solution,
where a free-stream forcing

f̃(ξ, t) = ξe−ξte−t (4.1)

has been applied. These results clearly show a temporally and spatially decaying
wave-like solution. Note that the perturbation is also two-dimensional in this case
and so there is no crossflow component to the flow.

A computation of the corresponding n = 0.35 three-dimensional solution, using
the same procedure yielded numerically inconsistent solutions. In some ways this is
not unexpected, given the existence of steady leading-edge eigensolutions described
earlier for this choice of base flow (see figure 1). The case (4.1) was therefore computed
using a procedure developed from that of Duck et al. (1999) to handle steady flows
which possess leading-edge eigensolutions. This scheme involved performing a second-
order central finite-difference approximation to (2.36)–(2.39) in the η-direction (using
Nη points in the range 0 6 η 6 η∞), together with standard, second-order central
differencing in the ξ-direction also; therefore in spite of the system (2.36)–(2.39) being
parabolic in nature in ξ, the system was treated as quasi-elliptic in this direction.
Initial conditions were imposed at ξ = 0 and t = 0, namely that

ũ(η, 0, t) = φ̃(η, 0, t) = ψ̃(η, 0, t) = θ̃(η, 0, t) = 0, (4.2)

ũ(η, ξ, 0) = φ̃(η, ξ, 0) = ψ̃(η, ξ, 0) = θ̃(η, ξ, 0) = 0, (4.3)

corresponding to an undisturbed state at the leading edge and initially. Downstream
(or rather at a finite location ξ = ξ∞, suitably far downstream), we imposed Neumann-
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Figure 6. Perturbed two-dimensional flow, n = 0.35, f̃(ξ, t) = ξe−ξte−t.

type conditions, namely

∂ũ

∂ξ

∣∣∣∣
ξ=ξ∞

=
∂φ̃

∂ξ

∣∣∣∣
ξ=ξ∞

=
∂ψ̃

∂ξ

∣∣∣∣
ξ=ξ∞

=
∂θ̃

∂ξ

∣∣∣∣
ξ=ξ∞

= 0. (4.4)

In the study of Duck et al. (1999), it was found that this type of condition proved
‘softer’, and as a consequence more effective than a Dirichlet-type of condition. Nξ

points were employed in the region 0 6 ξ 6 ξ∞. Crank–Nicolson differencing in the
timewise direction maintained the overall second-order accuracy of the scheme, but
also led to an implicit scheme. Again, following Duck et al. (1999), the resulting,
entire algebraic system at each timestep may be written symbolically in the form

Ax = R. (4.5)

Here the matrix A may be regarded as a banded matrix, of bandwidth no more than
12×Nξ or 12×Nη (depending on equation ordering) by no more than 4×Nξ ×Nη;
x denotes the vector-array containing the (unknown) current solution values, and R
denotes the vector-array containing forcing terms and values arising from the previous
timestep. The overall problem size is about 45% smaller if (2.40) is used in place of
(2.38), (2.39), which yields a system with a bandwidth of no more than 9×Nξ or 9×Nη

by no more than 3×Nξ ×Nη . The sparseness of A was fully exploited in the solution
of (4.5) and the ordering of the equations was chosen in order to minimize the size of
the stored A array; since the solution is linear, no iteration is required for the unsteady
perturbation, and therefore direct solution is possible. A further simplification is that
since the elements of the A array are independent of time (merely the timestep ∆t),
then the inversion of this matrix is only necessary once, leading to a problem at each
timestep which only requires simple matrix multiplication.

However, although the results obtained using this method were found to be rea-
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sonably independent of time step ∆t, they were found to be substantially dependent
upon the streamwise grid size ∆ξ. Of particular note was the sharp and temporally
increasing distribution close to the leading edge ξ = 0; this feature in particular was
prone to changes in numerical grids. Unfortunately there were limitations on the num-
ber of ξ-points we could consider, since the computational memory requirements can
be very significant, even when bandedness is fully exploited. A second, independent
computer code was developed independently to solve the system (2.36)–(2.40), which
was semi-implicit in time (t) also, but which evaluated the streamwise (ξ) derivatives
entirely at the previous timestep. Such an approach leads to a much more compact,
banded system than that in (4.5), permitting the usage of a much finer/more extensive
grid. However, the results thus obtained were quantitatively similar to those described
above, and similar numerical difficulties were experienced.

The question therefore arises as to the nature and causes of these. To investigate
(and resolve) these difficulties, in the following section we consider temporally periodic
solutions to the system (2.36)–(2.39).

5. Temporally periodic solutions
We seek solutions of the form

(f̃(ξ, t), ũ(η, ξ, t), φ̃(η, ξ, t), ψ̃(η, ξ, t), θ̃(η, ξ, t))

= eiωt(f̂(ξ), û(η, ξ), φ̂(η, ξ), ψ̂(η, ξ), θ̂(η, ξ)) + c.c. (5.1)

Here ω denotes a real frequency parameter (which we are at liberty to specify), and
c.c a complex conjugate. In this case we find it particularly beneficial to exploit (2.40)
instead of (2.38) and (2.39), and this leads to the following system for the hatted
quantities:

ûηη + 4nf̂ + ξ(1− n)f̂ξ + 2iωξ2f̂ − 2iωξ2û+ φ̂U0η + Φ0ûη

−ξ(1− n)U0ûξ − 4nU0û = 0, (5.2)

2û+ (1− n)ξûξ = φ̂η + ψ̂, (5.3)

ψ̂ηη − 2(1− n2)U0û+ φ̂Ψ0η + Φ0ψ̂η + 2Ψ0ψ̂ − 2iωξ2ψ̂ + (n− 1)ξU0ψ̂ξ

= 4n(n− 1)f̂ − 2ξ2(1− n)iωf̂ − (n− 1)2ξf̂ξ. (5.4)

The boundary conditions to be applied to this system are (2.41)–(2.42), together
with (4.2)–(4.4) but with tildes replaced by hats. The resulting system was solved with
the free-stream forcing

f̂(ξ) = ξe−ξ, (5.5)

to mirror (4.1).
In the case of base flows which do not possess leading-edge steady eigensolutions,

then it is quite clear that standard, parabolic marching schemes (in the ξ-direction) are
entirely appropriate. Figure 7 shows results for the streamwise wall stress τ̂ = ûη (η =
0) for such a case, namely the n = 0.35 two-dimensional (i.e. Falkner–Skan) solution,
with the frequency parameter ω set equal to unity. Here (and in later figures) we
represent the real component of quantities by a solid line, and imaginary components
by a dashed line. For this case, on account of the two-dimensional nature of both the
base flow and imposed disturbance, there can be no crossflow response. Overall, the
flow responds in a fairly damped, unsurprising manner to the free-stream forcing.
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Figure 8. (a) τ̂ and (b) ŵη (η = 0) distributions, ω = 1, n = 0.35, three-dimensional base flow.

Let us now move on to consider base flows which do possess leading-edge steady
eigensolutions; we consider again the three-dimensional n = 0.35 solution. In fig-
ures 8(a) and 8(b) we show results for the wall shear stresses (streamwise and
crossflow, namely τ̂ and ŵη(η = 0, ξ), respectively) for the case when ω = 1. The key
point to note is that these results were produced using the same, standard (parabolic)
marching procedure in the streamwise direction as that used to produce figure 7; it is
found that the solution far downstream decays naturally, although there is a signif-
icant transient-like growth in the solution at intermediate values of ξ. The response
in the wall shear stresses is particularly oscillatory, and of quite sizeable amplitude;
the characteristics of the disturbed flow are clearly quite different from those shown
in figure 7 for the other base-flow solution.
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Figure 9. τ̂ and ŵη (η = 0) distributions, ω = 0 (standard parabolic marching scheme), n = 0.35,
three-dimensional base flow.

For comparison purposes, figure 9 details distributions of τ̂ and ŵη (η = 0) obtained
using the same scheme for a steady, imposed forcing, i.e. when ω = 0; note that here
both quantities are entirely real. This case is very different, given that (algebraic)
growth is observed downstream; indeed the ξλ-type behaviour described in (2.25) is
here applicable as ξ →∞; this type of far-downstream behaviour may be avoided by
adding an appropriate multiple of the eigensolution to annihilate it, which may be
achieved by imposing far-downstream boundary conditions (i.e. downstream decay),
as discussed in § 2. In the case of unsteady flows, currently the main focus of our
interest, there seems no reason/need to do this; all unsteady (temporally periodic)
flows of this type ultimately decay downstream, albeit after a region of transient
growth, which can be significant.

Computations at increasingly higher frequencies (not presented here) clearly indi-
cated the oscillations becoming confined to a region close to the leading edge, whilst
computations at lower frequencies indicated the amplitude of both τ̂ and ŵη (η = 0)
increasing (trends that will be confirmed below).

The significant response that can be provoked in these flows (even when the imposed
forcing has effectively been removed) suggests the existence of some form of unsteady
eigenstate; the known existence of steady eigenstates reinforces this point of view. We
note that the transformation

ξ̂ =
√
ωξ (5.6)

leaves the system (5.2)–(5.4) unchanged, but with ω set equal to unity. We then seek to

construct a (universal) eigenstate (ûE , φ̂E, ψ̂E, θ̂E) by solving the system (5.2)–(5.4) with

ω = 1, f̂ ≡ 0, and by triggering the system in some appropriate manner. We adopted a
variety of procedures, all of which produced consistent results, although our favoured

method was to set φ̂E at the outermost grid point in η, at the first ξ̂-station away from

ξ̂ = 0, to some small, specified value, say δ̂, and then perform a standard (parabolic)

marching procedure downstream, using the condition φ̂Eη → 0 as η → ∞, consistent
with (2.20). In this way the streamwise, free-stream perturbation velocity component

is not directly triggered, consistent with f̂(ξ) = 0. However, since there was sizeable
growth in the solution for ξ � 1, and because of re-normalization (see below), the
particular mechanism for triggering the flow was not important. This type of technique
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Figure 10. (a) τ̂E and (b) ŵEη(η = 0) (eigenvalue) distributions,
n = 0.35, three-dimensional base flow.

may be regarded as reminiscent of the ‘free interaction’ solutions of Stewartson &
Williams (1969), and others, linked to early triple-deck work. Figure 10(a, b) shows
the resulting two components of wall shear for this eigenstate, normalized such that
the maximum value (amplitude) of τ̂E = ûEη(η = 0) is unity. Again, just as with the
forced (inhomogeneous) results detailed above, after a region of growth away from

ξ̂ = 0, followed by an oscillatory zone, the solution ultimately decays downstream. Of
particular note is the not insubstantial amplitude of the crossflow component of wall
shear (an order of magnitude greater than the streamwise component). The initial

solution growth away from the leading edge may be anticipated, since as ξ (or ξ̂)→ 0,
the system (5.2)–(5.4) becomes quasi-steady, which, from Duck et al. (1999, 2000) we
know exhibits (steady) spatial growth in eigensolutions. On the other hand as ξ (or

ξ̂) →∞, unsteadiness effects undoubtedly play a leading role – the ξ2 multiplying the
unsteady terms in (5.2), (5.4) ensures this. In the Appendix it is shown that sufficiently
far downstream, solutions to (5.2)–(5.4) take a form similar to decaying, unsteady
eigensolutions found in the context of two-dimensional boundary layers by Lam
& Rott (1960), Ackerberg & Phillips (1972) and Goldstein (1983) (these also have
some similarity with those found in corresponding axisymmetric boundary layers by
Duck 1991). The key result is that the unsteady eigen-behaviour is dominated by a
term of the form e−Λξ3

, where Λ is dependent on ω, and is such that Re{Λ} > 0,
irrespective of ω. It is for this reason that downstream decay is assured. One crucial
observation here, therefore, is that even an infinitesimal flow perturbation (such as

that introduced here, close to ξ̂ = 0) can provoke a highly significant flow response,
suggesting certain ramifications for the boundary-layer transition process in cases
when steady leading-edge eigensolutions exist.

A similar treatment, imposing the same form of disturbance as that above on
the other (two-dimensional) solution with n = 0.35 produced a disturbance which
exhibited very rapid decay over just a few streamwise grid points. A final eigenstate
we consider is that pertinent to a Blasius base flow. We may anticipate (Luchini
1996; Duck et al. 1999) that imposed two-dimensional disturbances (i.e. with no
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Figure 11. (a) τ̂E and (b) ŵEη(η = 0) (three-dimensional eigenvalue) distributions, Blasius base flow.

crossflow) must be inherently ‘stable’ (and this was confirmed in our numerical
experiments). Therefore we deliberately triggered three-dimensionality, i.e. crossflow,
at the first location downstream of the leading edge in our marching scheme, and then
proceeded in the usual manner downstream, thereafter. The observed distributions for
τ̂E and ŵEη(η = 0) are displayed in figures 11(a) and 11(b) respectively, where again
the distributions have been normalized in such a way that τ̂E takes on a maximum
value of unity. Again, the eigenstate is predominantly oscillatory in nature; note
in particular that the crossflow disturbances are approximately twice those of the
streamwise component; the large magnitude of response of the crossflow component,
compared with the streamwise component, seems a quite universal feature observed
in these eigenfunctions.

The eigenstates just described help explain some of the trends observed in our
forced computations, in particular in the limit as ω → 0, which turns out to be
important in understanding some of the results described below. Equation (5.6)
indicates a lengthening streamwise scale of ξ = O(ω−1/2) in the low-frequency limit
(confirmed by a number of computations performed by the authors). Equally, there is
a significant increase in the overall amplitude of the flow response (let us call this A)
as ω → 0. This is quite easy to quantify by supposing ξ = O(1) and ω → 0 (again),

and so from (5.6) ξ̂ → 0, in which case the general response to the forcing is likely to

be O(Aξ̂λ), or O(Aωλ/2), where λ is that originally introduced in (2.25). This response
must be equated to the applied forcing at ξ = O(1) locations, and hence is O(1). We
may therefore expect that a measure of the amplitude of the response will be

A = O(ω−λ/2). (5.7)

Inspection of our numerical results as ω → 0 indicates this is indeed the case (note
that for the three-dimensional n = 0.35 case, λ ≈ 1.34).

Above (in § 4) it was shown that an initial value approach to (2.36)–(2.40) failed
in the case of basic flows possessing the aforementioned leading-edge eigensolutions.
We are now in a position to treat this problem using an alternative approach, based
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Figure 12. (a) τ̃ and (b) w̃η (η = 0) distributions, three-dimensional base flow, n = 0.35,

f̃(ξ, t) = ξe−ξte−t (interval 10 time units).

on a (temporal) spectral method. Specifically we consider Fourier transforms, writing

(û, φ̂, ψ̂, θ̂) =

∫ ∞
−∞

(ũ, φ̃, ψ̃, θ̃)e−iωt dt, (5.8)

which leads to the system (5.2)–(5.4) for each ω. For the particular case of the forcing
function (4.1), the transform of this is (retaining the above notation)

f̂(ξ, ω) =
ξe−ξ

(1 + iω)2
. (5.9)

The system (5.2)–(5.4), with this forcing, was solved over a range of values of ω
(typically 0 6 ω 6 40) in steps of ∆ω (typically 0.01), each value of ω being considered
independently; computations for each value of ω were carried out precisely in the
same manner as that described earlier in this section, followed by a quadrature to
perform the inversion integral (5.8). Note that since values at −ω are merely the
complex conjugate of those values at +ω we were able to halve the computational
task.

First the computation for the n = 0.35 two-dimensional case was repeated, and
confirmed the results shown in figure 6. Secondly the corresponding three-dimensional
case was tackled using this method, and results for τ̃(ξ, t) are shown in figure 12(a)
and results for the crossflow component of wall shear stress, w̃η(η = 0, ξ, t) are shown
in figure 12(b). In these figures, results are shown at regular time intervals.

From these results it is clear that there is an initial period of quite substantial
growth (until approximately t = 20), followed by a gradual decay of the solution
in the form of a downstream-convecting wavepacket. It is worth emphasizing here
that the applied forcing (4.1) will have decayed away significantly by this peak
response time and that it is clear from (5.6) that as time increases, ξ = O(t1/2) is
the key streamwise scale. It will further be shown in the following section that the
wavefront has the (more precise) location ξ =

√
(1− n)t in this limit. Equally, the

(algebraic) decay of the wave with time/ξ may be anticipated from (5.7) above, which
leads to the t � 1 response being O(t(λ/2)−1); again, detailed study of the above



52 P. W. Duck and S. L. Dry

numerical results revealed consistency with this prediction. This suggests that if λ > 2
(corresponding to n > 0.45 approximately), then this wavepacket must grow as it
is convected downstream. We therefore attempted to perform a calculation similar
to that performed in the calculation of figure 12(a, b), for n = 0.5 (in this case
λ = 2.49 . . .). However, this computation yielded numerical results that were highly
dependent on the spatial grid size ∆ξ. Closer inspection of the results revealed that
this dependence on ∆ξ is found in all spectral frequencies ω. On the other hand it was
possible to produce consistent, highly accurate eigenfunction distributions (analogous
to figure 10a, b) for this larger value of the parameter n. Further careful analysis of the
forced (inhomogeneous) results strongly suggested that these had a behaviour of the
form (∆ξ)λ−2. This observation points the way to the basic difficulty: our numerical
scheme has a truncation error of O((∆ξ)2); the behaviour of the eigenfunction as
ξ → 0 is of the form ξλ, and this leads to the possible unintentional excitation of the
eigenstate occurring when λ > 2, causing contamination of the solution downstream.
The contamination is highly dependent on grid size ∆ξ, hence the overall solution
dependence on this quantity. Higher-order differencing schemes are likely to delay
this effect, but as λ (and hence n) increases, any finite-difference method based on the
above will surely eventually fail.

We experimented with several different numerical procedures (including various
transformations in ξ) in a bid to overcome this difficulty, but without success.
The fundamental problem is that it is difficult to resolve the two, disparate depen-
dences as ξ → 0 – a linear ξ dependence and a ξλ dependence (which we wish to
avoid/annihilate).

It was therefore decided to side step this difficulty. As noted above we had no
difficulty in generating eigenstates accurately and reliably for cases when λ > 2.
We therefore decided to follow a procedure which triggered the flow perturbation
not by means of the free-stream velocity forcing function f(ξ, t), but rather by
forcing φ̃(η → ∞, ξ = ∆ξ, t) = δ̃(t), mimicking the procedure developed previously to
generate eigenstates. More precisely, for each spectral frequency ω we generated the

corresponding eigenstate, and then set δ̃(t) = δ̂te−t, and performed a quadrature of
the form (5.8) to invert the solution. Finally a normalization process was undertaken,
by which the response was scaled such that the maximum value of |τ̂| at t = 1
was unity. This is of course entirely arbitrary, but does lead to a response which is
effectively grid-independent. The results for τ̂ and ŵη (η = 0) are shown in figures 13(a)
and 13(b) respectively. These show the growth/instability of the downstream-moving
wavepacket. Indeed this growth was seen to agree well with the argument proposed
above, which can be extended to this form of flow excitation, suggesting a wave-
amplitude growth of the form t0.249 (approximately) as t → ∞; the location of the
wavepacket is also described well by the suggestions made earlier.

A further question pertinent to ask at this stage is the reason for the failure of the
initial-value approach to the problem, as described in § 4. In particular, there appears
to be a failure in the solution linked to the region close to the leading edge. Certainly
high-frequency calculations indicated a concentration of the solution close to ξ = 0,
and (5.6) confirms this will occur as ω increases. Equally, the factor ξ2 multiplying the
time derivatives in (2.36)–(2.40) strongly suggests a subtle behaviour, both spatially
and temporally, as ξ → 0. Further, in the light of the difficulties associated with
the spectral scheme when λ > 2, as reported above, one likely scenario for the
difficulties with the time-marching procedure described in § 4 is that truncation error
is responsible for triggering the algebraic spatial eigenvalue close to ξ = 0, and a
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subsequent contamination of the global solution; fortunately the spectral method can
bypass these difficulties.

A number of the flow features described above, including the large-time solution,
tentatively suggest the combination t/ξ2 is an important one, and this forms the basis
for the next section.

6. Another class of perturbation
The factor ξ2 which multiplies all time derivatives in (2.36)–(2.40) suggests that

we investigate disturbances that, rather than being dependent on ξ, t, (and η), are
dependent on ξ, T = t/ξ2 (and η). Accordingly we now regard our tilde variables in
(2.31)–(2.35) to be functions of ξ, T and η (rather than of ξ, t and η), which leads to
the following set of equations:

ũηη + 4nf̃ + ξ(1− n)f̃ξ − 2(1− n)Tf̃T + 2f̃T − 2ũT + φ̃U0η + Φ0ũη

−(1− n)U0(ξũξ − 2TũT )− 4nU0ũ = 0, (6.1)

2ũ+ (1− n)(ξũξ − 2TũT ) = φ̃η + ψ̃, (6.2)

θ̃ = ψ̃η, (6.3)

θ̃ηη − 2(1− n2)(U0ũη +U0ηũ) + φ̃θ0η + Φ0θ̃η +Ψ0θ̃ + ψ̃θ0 + 2U0θ̃

= (1− n)[−ξθ0ũξ + 2Tθ0ũT + ξU0θ̃ξ − 2TU0θ̃T + ξψ̃ξU0η − 2Tψ̃TU0η]

−2ũθ0 + 2θ̃T . (6.4)

Note that (6.3) and (6.4) may be replaced by the following (thereby eliminating θ̃):

ψ̃ηη − 2(1− n2)U0ũ+ Φ0ψ̃η +Ψ0ηφ̃− 2ψ̃T + 2Ψ0ψ̃ + (n− 1)U0(ξψ̃ξ − 2Tψ̃T )

= 4n(n− 1)f̃ − 2(1− n)f̃T − (n− 1)2(ξf̃ξ − 2Tf̃T ). (6.5)

Setting n = 1 in all the above leads to a problem involving merely T and η
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dependence, and as such is just the system studied in § 3. At this stage it is worth
pointing out certain similarities (and differences) with related work on other problems
by previous authors. First, Ridha (1992) performed a class of temporal stability
analysis on (limiting forms of) corner boundary-layer flows, equivalent to using the
T -variable (as defined above). However, as noted already, he neglected to incorporate
the T (∂/∂T ) term in the system analogous to (6.1)–(6.5) above, which can therefore
only be formally correct if n = 1. Further, he assumed a solution to be independent
of our spatial variable ξ; this in itself is not incorrect, but does restrict the class of
flow under consideration. Secondly we note the work on the temporal stability of
Jeffrey–Hamel flows by Hamadiche, Scott & Jeandel (1994) and McAlpine & Drazin
(1998), who used a temporal variable akin to our T -variable defined above. This
variable was also used by Tam (1996) as a basis for studying the non-parallel stability
of the Bickley jet.

An interesting point regarding the system (6.1)–(6.5) also worth making is that if
the temporal (T ) dependence is neglected, i.e. if |∂/∂T | � |∂/∂ξ| the system admits
eigensolutions of the spatial form ξλ (see (2.25)) as ξ → 0. On the other hand
if the spatial (ξ) dependence is neglected, i.e. if |∂/∂T | � |∂/∂ξ| then the system
seems to admit solutions of the form T−λ/2 as T → ∞ (same λ as before, with
Re{(1− n)λ} > 0). We therefore see a close linkage between the algebraic spatial
behaviour and the corresponding algebraic temporal behaviour.

In order to tackle (6.1)–(6.5) we first make the following transformation:

ξ = es. (6.6)

This renders the problem doubly infinite in s, i.e. −∞ < s < ∞ (as 0 < ξ < ∞),
and leads to the advantage of a system of equations whose coefficients are entirely
independent of s (or ξ). We next perform a Fourier transform on all variables in the
s-direction, as follows:

u∗(η, T ; k) =

∫ ∞
−∞
ũ(s, η, T )e−iks ds, (6.7)

with obvious definitions for the other starred variables, i.e. φ∗, ψ∗, θ∗ and f∗. The
system (6.1)–(6.5) may then be written in the form

u∗ηη + 4nf∗ + ik(1− n)f∗ − 2(1− n)Tf∗T + 2f∗T − 2u∗T + φ∗U0η + Φ0u
∗
η

−(1− n)U0(iku
∗ − 2Tu∗T )− 4nU0u

∗ = 0, (6.8)

2u∗ + (1− n)(iku∗ − 2Tu∗T ) = φ∗η + ψ∗, (6.9)

θ∗ = ψ∗η , (6.10)

θ∗ηη − 2(1− n2)(U0u
∗
η +U0ηu

∗) + φ∗θ0η + Φ0θ
∗
η +Ψ0θ

∗ + ψ∗θ0 + 2U0θ
∗

= (1− n)(2Tθ0u
∗
T − ikθ0u

∗ + ikU0θ
∗ − 2TU0θ

∗
T + ikψ∗U0η − 2Tψ∗TU0η)

−2u∗θ0 + 2θ∗T . (6.11)

It was generally found advantageous to replace (6.11) by

ψ∗ηη − 2(1− n2)U0u
∗ + Φ0ψ

∗
η +Ψ0ηφ

∗ − 2ψ∗T + 2Ψ0ψ
∗ + (n− 1)U0(ikψ

∗ − 2Tψ∗T )

= 4n(n− 1)f∗ − 2(1− n)f∗T − (n− 1)2(ikf∗ − 2Tf∗T ). (6.12)

This type of approach is in the spirit of a number of other boundary-layer
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approaches involving the use of Fourier transforms (cf. Burggraf & Duck 1982; Duck
& Burggraf 1986; Duck 1985 and others), and frequently simplifies computational
procedures in such calculations. In particular, in the system (6.8)–(6.12) above, no
spatial (k) derivatives exist, and the problem for each value of wavenumber k can be
considered in isolation (at least for this linear class of problem). The primary difficulty
with this system, however, is in the T -direction: in particular (6.8), (6.11) and (6.12)
all involve a derivative term of the form [2 − 2T (1 − n)U0]∂/∂T ; the coefficient
(in square brackets here) will change sign, if T = ((1 − n)U0)

−1, which is certainly
possible. Similar situations have been found to occur in other problems, including the
problem of impulsively started flow over a semi-infinite plate (Stewartson 1951, 1973;
Hall 1969; Dennis 1972), and also in other problems (Ban & Kuerti 1969; Walker &
Dennis 1972; Phillips 1996). Problems involving sign changes of this type are usually
referred to as singular parabolic, and are characterized by having regions of mixed
mathematical diffusivity with reversals in the direction of convection of vorticity. Such
problems obviously require a somewhat different solution approach from standard
parabolic problems. It it worth pointing out that this situation is quite different from
that encountered in Duck et al. (1999), and indeed in § 4 above with ω = 0, where
the difficulties with parabolic marching procedures were associated with the existence
of eigensolutions (rather than changes in the sign of diffusivity). Having said this,
we did choose a numerical procedure based on that described in § 4. The system
(6.8)–(6.11) (or (6.12)) was treated using several distinct approaches. The first was
based largely on that described in § 4, i.e. the method treated the problem in an elliptic
manner, with second-order central differencing in T . As noted already, each value of
k may be treated independently, and so for each such value the problem is merely
a two-dimensional one (in η and T ); standard second-order central differencing was
implemented in η. A direct solution procedure was adopted for the solution of the
(linear) algebraic system, which was of the general form (4.5); the matrix A is again
relatively sparse (banded), and this property was fully exploited. The second method
was based on a parabolic marching scheme, in which the direction of differencing
in the T -wise direction was determined by the sign of [1 − (1 − n)TU0(η)]: if this
is positive, then the approximation to (6.1) and (6.5) was performed at T levels Tj
and Tj − ∆T (to determine values at T = Tj), whilst if [1 − (1 − n)TU0(η)] < 0,
then the difference approximation involves values at Tj and Tj + ∆T (to determine
values at T = Tj). Equation (6.2) was tackled using exclusively backward difference
approximations, i.e. using values at Tj and Tj − ∆T to determine the solution at the
Tj level. Obviously an iterative approach is necessary here, sweeping repeatedly in
T until adequate convergence has been achieved. The method may be regarded as
similar to that used by Williams (1975) and Duck, Marshall & Watson (1986). The
advantage over the former method (that based on the technique described in § 4) is
the lower computational memory requirements, the disadvantage being the numerical
stability issues related to the iterative process.

As a test case, we took for each k

f∗(k, T ) = T e−T (6.13)

(cf. (4.1)), i.e. a distribution independent of the spatial wavenumber k, although of
course in principle it would be straightforward to use convolution integrals in order
to consider more general spatial variations. (6.13) may be interpreted ‘physically’ as
a free-stream perturbation of the particular form

f̃ = ξikT e−T = tξik−2e−t/ξ
2

, (6.14)
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Figure 14. τ∗ distributions, two-dimensional base flow, n = 0.35, f∗(T ; k) = T e−T , k as indicated.

wherein k may be regarded as a prescribed parameter, akin to a wavenumber. Our
first example relates to the n = 0.35 two-dimensional (Falkner–Skan) base flow; to
recap, this is an example with no leading-edge eigensolutions. Also, given the two-
dimensional nature of the base flow and of the disturbances, then the perturbed
flow field is also two-dimensional. Nonetheless the comments above regarding the
sign changes of the coefficient of certain of the ∂/∂T terms are still applicable. For
this case, our results were obtained using both the methods outlined above, which
produced entirely consistent results. Figure 14 shows distributions of the perturbation
streamwise shear stress τ∗ = u∗η (η = 0) for selected values of k (here, again we have
adopted the convention that real parts are denoted by solid lines, imaginary parts
by broken lines). It is clear from these results that in spite of the singular parabolic
nature of the system, these results certainly seem to be regular in T . We note too the
insensitivity of Re{τ∗} to k – certainly a small-k expansion suggests that in this limit
Im {τ∗(k)} = O(k) and Re{τ∗(k)} = Re{τ∗(k = 0)} + O(k2), trends that are seem to
have applicability over a broad range of k.

We now turn our attention to consider the other base flow solution for n = 0.35, i.e.
the three-dimensional case. Unfortunately again we encountered a number of numer-
ical difficulties with the two aforementioned procedures. First, a considerably finer
numerical grid appeared to be necessary for this class of base flow, and for the direct
method described above this led to excessive computational memory requirements (in
excess of 2 Gb), rendering the procedure impractical. Secondly the iterative technique,
as described above, encountered numerical stability problems, which we were unable
to overcome in spite of a good deal of perseverance including considerable amounts
of under-relaxation. As a (third) alternative we therefore adopted an approach based
largely on that described in § 5. This involved using the Fourier transform scheme in t
(i.e. (5.8)). Disturbances corresponding to (6.13) may be transformed into (ξ, ω)-space,
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such that

f̂(ξ, ω) =
ξik+2

(1 + iωξ2)2
, (6.15)

where k denotes the wavenumber introduced earlier in this section. Equation (6.15)
follows directly by taking the Fourier transform of (6.14) (with respect to t, using
(5.8)). For fixed k, the system was then solved in exactly the same manner as that
described in the previous section (although in this case it is necessary to consider
both positive and negative real values of ω, since the solutions at latter values are no
longer the complex conjugates of the former values, except when k = 0). The solution
was then transformed back to t-space (using (5.8)), divided by ξik , and then recast in
terms of T = t/ξ2 in order to generate the starred quantities, as in (6.8)–(6.12). As a
(partial) check, the results should be invariant in terms of this coordinate, which our
results were, except at very early and late times where some degradation was noted
(although this was seen to improve with grid refinement). What may be regarded
as a more stringent check on the scheme was undertaken by tackling the case for
the two-dimensional, n = 0.35 base state, and the results thus obtained were entirely
consistent with those shown in figure 14. Results for the three-dimensional, n = 0.35
base state are shown in figures 15(a) (τ∗) and 15(b) (w∗η (η = 0)). It is worth mentioning
that as the numerical grid was refined, the results using the first (direct) numerical
approach described earlier in this section, did appear to be approaching the results
shown in figure 15(a, b), although the third (spectral) numerical scheme employed was
by far the most feasible.

An important detail to note with the original system (6.8)–(6.12) is that between
0 < T < 1/(1− n) the system is entirely parabolic in the forward sense (in T ).
Beyond T = 1/(1− n) backward parabolicity occurs, initially at the outer edge of the
boundary layer, but then, as T increases closer to the surface η = 0; this applies to
both (two- and three-dimensional) classes of flow. As a consequence it is possible to
solve the system (6.8)–(6.12) in the zone 0 < T < 1/(1− n) using standard parabolic
marching procedures, and these yielded a further useful check on our solutions.
Hence T -space can be considered to comprise two distinct zones; this observation
has important consequences, in particular in understanding/interpreting figures 12
and 13. As time (t) increases, we may identify a definite front to the wavepacket (seen
clearly in figures 12 and 13 also), at T = 1/(1− n), or ξ =

√
(1− n)t. Ahead of this

location at large times, i.e. ξ >
√

(1− n)t or (T < 1/(1− n)), disturbances will have
substantially decayed, leaving the wavepacket behind this front (ξ <

√
(1− n)t).

This effect can be further and convincingly illustrated by performing a numerical
experiment based on a very slight modification of the procedure used to compute
figure 10. Taking again the n = 0.35 three-dimensional base flow, instead of triggering

the disturbance (φ̂E(η → ∞) = δ̂) close to ξ̂ = 0, we ‘tripped’ the flow at locations

relatively distant from the leading edge of the plate instead, at ξ̂ = ξ̂0 > 0. Figure 16
shows the results for τ̂E (the streamwise component of the wall shear) thus obtained,

with ξ̂0 = 0.5 and 1; the same normalization process as performed before was used

(based on the maximum of τ̂E). In the case of ξ̂0 = 0.5 the initial input is still amplified
downstream, with the maximum amplitude being attained at a location away from the

triggering point, i.e. ξ̂ = ξ̂0, although inspection of the results reveals significantly less

amplification than occurs in figure 10(a). In the case of ξ̂0 = 1 the maximum response

is at the triggering point, i.e. ξ̂ = ξ̂0, indicating no overall amplification of the initial
input, but instead a general oscillatory decay. In view of the observations made above
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(and other calculations performed by the authors) we surmise that there exists a

critical value of ξ̂0 = (1− n)1/2 beyond which disturbances decay, and ahead of which

they will initially grow (although the amplification diminishes with an increase in ξ̂0,
the maximum growth being when the disturbance is introduced at the leading edge,

namely ξ̂0 = 0), before ultimately decaying sufficiently far downstream. The point

ξ̂0 = (1− n)1/2 has some significance, playing a role akin to that of a neutral point.
A question pertinent to ask is the nature of the solution close to the wave front

T = 1/(1− n). Here the situation is the same as that for the problem of impulsively
started flow past a semi-infinite flat plate; in this case Stewartson (1973) showed that
the transition from the Blasius state to the Rayleigh state was accomplished by means
of an essential singularity. The analysis of Stewartson (1973) is directly applicable
here, in particular the solution involves terms of the form exp [−F(η)/(T −1/(1− n))]
for T > 1/(1− n), |T − 1/(1− n)| � 1, F(η) > 0.

As noted earlier, as T → ∞ the solution will be dominated by a behaviour of the
form T−λ/2 in the case of flows containing leading-edge eigensolutions, otherwise in
this limit the flow will be dominated by super-exponentially decaying eigenstates (see
the Appendix of Dennis 1972, and we note too the parallels with the Appendix of
the present paper).

7. Concluding discussion
In this paper we have identified and investigated a number of aspects of the effect

of a class of three-dimensional, unsteady disturbances, as defined in (2.6)–(2.9), that is
with a linearly growing crossflow in the crossflow direction, on a base state possessing
the same spanwise variation. This form of disturbance has been chosen deliberately,
partly to ensure the analysis is completely rational, and also to reduce the dimension
of the problem by one (to avoid DNS-type computations – most of our calculations
were performed on a laptop computer). It is our view that if a flow is unstable to any
reasonable class of disturbance, then probably it will be susceptible to instability in
reality. The theory is dependent on the assumption of infinite Reynolds number, and
consequently is based entirely upon the (three-dimensional) boundary-layer equations,
and as such the theory is based upon completely rational approximations, unlike
most traditional stability analyses which require the parallel-flow approximation (for
example).

There are several aspects to this study worth emphasizing. Although most of the
paper is concerned with linear flow perturbations, most of § 3 is concerned with
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fully nonlinear flows. The special choice of n = 1 permits much simplification of
the disturbance equations, reducing the problem to a two-dimensional one. Whereas
the linear stability of the Hiemenz solution is shown (based on our underlying
assumptions), a large enough (negative) flow disturbance in the free-stream leads to
a nonlinear flow breakdown, of a form related to that of Banks & Zaturska (1979,
1981) and Hall et al. (1992), which is predominantly inviscid; there could be some
justification in describing this as a form of an early transition process, given its
inherent nonlinearity. The picture with the other n = 1 solution, namely that found
originally by Davey & Schofield (1967) is different. Linear analysis points to instability,
which our initial-value approach confirms; a positive ‘jolt’ of the streamwise velocity
in the free stream leads to the flow ultimately becoming Hiemenz-like at large times;
a negative ‘jolt’ leads to a flow breakdown, similar, but not identical, to that observed
in the highly perturbed Hiemenz flow situation; the inviscid breakdown structure,
and variations thereof, seems a quite generic form of breakdown.

The results of § 4, related to the initial-value problem for general values of n
(for flows which do exhibit steady, leading-edge eigenstates) are at first puzzling. A
variety of numerical procedures was adopted (as described in the text) and all were
unsuccessful. However the analysis of § 6 sheds some light on these difficulties, in
particular because of the significance of the quantity T = t/ξ2; in the (temporal)
initial value approach undertaken in § 4 it is clear there are likely to be some
difficulties in the regime when t = O(ξ2), wherein there are some subtle variations in
the nature of the flow structure, coupled with the existence of flow eigenstates – we
believe it is these features that ‘conspire’ to cause the problems encountered with
the numerical procedure of § 4. The temporally periodic states, as described in § 5,
indicate conclusively the possibility of large-amplitude flow responses to quite small
flow forcing, due to the excitation of the flow eigenstates. The behaviour seen in
figure 11 (together with the eigenvalue distributions shown in figures 10 and 11)
mimics results found frequently in non-parallel flow analyses, with an initial regime
of growth followed by a (slow) decay (for example this type of behaviour is frequently
observed in computations of the parabolized stability equations: Bertolotti 1991;
Herbert & Lin 1993). The steady (ω = 0) state is certainly a special case, being the
only one with unbounded growth downstream, and as such may be regarded as a
singular limit.

It is then fortunate that general temporal variations (as attempted unsuccessfully
in § 4) are feasible using a Fourier transform method; a wavepacket-type response is
seen in these results, and here (again) the behaviour of the flow is controlled, to a
large extent, by the magnitude of the steady, spatial eigenvalue λ. Some particularly
illuminating results are shown in figures 12 and 13. Figure 12 indicates how a quite
small (impulsive) perturbation to the flow can provoke a significant response, which is
particularly profound in the crossflow (the maximum amplitude of the forcing, which
is applied to the free-stream velocity, is |f̃| ≈ 0.135, whilst the component of the
wall shear experiences a maximum amplitude approximately 15 times this value). The
regime for which λ > 2 (see figure 16) certainly points to a definite route to transition,
given that an impulsive input can trigger an infinite response far downstream/at large
time (within the framework of the linear model). Equally, the eigenstates (shown in
figures 10 and 11) indicate how an infinitesimal input can provoke a finite flow
response. This significant effect will have obvious repercussions for nonlinear studies,
where it would appear that solution breakdown (at least within the framework of the
boundary-layer formulation), must surely be a strong possibility. Such a failure could
then lead to the possibility of a transition process.
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Linked to the whole question of ‘instabilities’ and breakdowns seems to be the
physical phenomenon of boundary-layer collisions. Negative crossflow velocities cor-
respond to a flow converging along the line of symmetry (z = 0), and certainly base
flows of this type are those that do exhibit leading-edge eigenstates, which seem to
be at the heart of transient growth. (On the other hand two-dimensional base states,
with obviously no crossflow, do exhibit leading-edge eigenstates for n < 0.167 . . . .)

The unsteady (temporally periodic) cases, forced over a range of streamwise lo-
cations, possess a further subtlety; our computations, performed using the straight-
forward parabolic marching scheme in ξ clearly yield acceptable decaying solutions
downstream. However it is possible to add to these forced solutions an arbitrary
multiple of the corresponding eigensolution, to yield an (infinite) family of perfectly
acceptable solutions. The resolution of this ambiguity could presumably be achieved
through a temporal initial-value type of approach to the problem, although un-
fortunately none of our numerical schemes permit such an approach under these
circumstances (the implication being that the ultimate periodic state is dependent on
the time-history of the flow). On a more formal level these solutions as computed in
our case are generally the only solutions that are analytic in ξ as ξ → 0, insofar as
other solutions would have a component of the form ξλ in this limit, thus clearly
mathematically distinguishing the solutions we have calculated.

There exists a corollary to this paper, which is relevant to the Blasius base flow,
and indeed all two-dimensional base states (for which W0(η) ≡ 0). In these cases the
linearized analysis is equally applicable to crossflow perturbations which do not vary
linearly with z, but rather have the following form (with |δ| � 1):

U∗ = xn[U0(η) + δ cos αzũ(η, ξ, t) + · · ·], (7.1)

V ∗ = x(n−1)/2[V0(η) + δ cos αzṽ(η, ξ, t) + · · ·], (7.2)

W ∗ = δxn−1[sin αzw̃(η, ξ, t) + · · ·]. (7.3)

This class of behaviour then has the same crossflow form as that considered in the
study of Luchini (1996) on steady perturbations to Blasius flow. The analysis proceeds
exactly as before, and it is also possible to renormalize in such a way that we may set
α = 1 without any loss of generality, and the relevant results in this paper are then
directly applicable.

There is an interesting and detailed discussion by Luchini (1996) (who in turn
refers to some of the comments of Kachanov 1994) regarding the possible linkage
between algebraic growth (at least in the steady context) and bypass transition, to
which the reader is referred. We believe the present study adds further evidence for a
connection between these two (one theoretical the other experimental) observations.
Certainly there do seem to be some intriguing parallels here. Experimentally the
bypass phenomenon is generally regarded as being one where there is a rapid nonlinear
breakdown (rather than the usual boundary-layer instability mechanism resulting from
first the amplification and then the interaction of instability modes). In our results, it
is clearly seen that very large flow perturbation amplitudes can be generated, albeit
within the confines of linearized theory.

One question posed at the beginning of this paper was linked to the determination
of which of the various states found by Dhanak & Duck (1997) and Duck et al.
(2000) were the most likely to be observed in practice. On the basis of our results
regarding the class of disturbances studied here, certainly the suggestion is that it is
the state which possesses steady leading-edge eigenvalues with λ < 0 only that would
be the more likely to exist. However we should point out the possibility of other forms
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of flow instabilities, not covered by the present study. Obviously the description of
the formation of Tollmien–Schlichting waves is not included within this theory and
neither is the possibility of crossflow instabilities, both of which are likely occurrences
(the latter in flows involving substantial amounts of crossflow).

The authors gratefully acknowledge the support of EPSRC, and a number of useful
comments of the referees. P.W.D. wishes to thank Dr S. J. Cowley for reminding him
of the work of Banks & Zaturska and Riley & Vasantha.

Appendix
Here we consider the downstream limit of the (homogeneous form of the) system

(5.2)–(5.4), having introduced the transformation (5.6) which enables us to set ω = 1

without any loss of generality. Simply stated, we investigate the ξ̂ → ∞ form of
eigensolutions to this system. The analysis closely follows that of Lam & Rott (1960),
Ackerberg & Phillips (1972) and Goldstein (1983) for two-dimensional unsteady
disturbances (of infinite wavenumber) to Blasius flow, and of Duck (1991) for the
corresponding axisymmetric configuration.

We define a scaled transverse scale corresponding to a thin sublayer as follows:

σ = ηξ̂ = O(1) (A 1)

in the limit as ξ̂ → ∞. We then anticipate that the perturbation (hatted) variables
take the following form in this limit:

û = g(ξ̂)e−λξ̂
3

û1(σ) + · · · , (A 2)

φ̂ = ξ̂2g(ξ̂)e−λξ̂
3

φ̂1(σ) + · · · , (A 3)

ψ̂ = ξ̂3g(ξ̂)e−λξ̂
3

ψ̂1(σ) + · · · , (A 4)

θ = ξ̂4g(ξ̂)e−λξ̂
3

θ̂1(σ) + · · · , (A 5)

where g(ξ̂) = o(eλξ̂
3

). Note that on the σ = O(1) scale,

U0 ∼ σ

ξ̂
U ′0(0), Φ0 ∼ σ2

2ξ̂2
Φ′′0(0), Ψ0 ∼ σ

ξ̂
Ψ ′0(0), θ ∼ θ0(0). (A 6)

The coefficient in the exponential, namely λ, is as yet undetermined. Substitution of
(A 2)–(A 6) into (5.2)–(5.4), utilizing (5.6), taking σ = O(1), leads to the following:

û1σσ − 2iû1 +U ′0(0)φ̂1 + 3λ(1− n)U ′0(0)σû1 = 0, (A 7)

ψ̂1 + φ̂1σ + 3λ(1− n)û1 = 0, (A 8)

ψ̂1σσ − 2iψ̂1 + 3λU ′0(0)(1− n)σψ̂1 = K̂. (A 9)

Combining these equations (and differentiating the result with respect to σ) leads to

φ̂1σσσσ + φ̂1σσ{3(1− n)λU ′0(0)σ − 2i} = 0. (A 10)

Hence, demanding boundedness as σ →∞ leads to the conclusion that

φ̂1ζ̂ζ̂ = CAi(ζ̂), (A 11)
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where C is a constant, and

ζ̂ = [−3(1− n)λU ′0(0)]1/3

[
σ − 2i

3(1− n)λU ′0(0)

]
. (A 12)

The boundary conditions on σ = 0 lead us to impose the condition that φ̂1σσσ(σ =
0) = 0, and so

Ai′(ζ̂0) = 0, (A 13)

where

ζ̂0 =
2i

[−3(1− n)λU ′0(0)]2/3
. (A 14)

Given that the zeros of the derivative of the Airy function are confined to the negative
real axis, we therefore have

ζ̂0 = ρje
iπ, j = 1, 2, . . . ,∞, ρj > 0, (A 15)

and so

λj =
1

3(1− n)U ′0(0)

[
2i

ρjeiπ

]3/2

. (A 16)

These eigenvalues may be directly correlated with those of Ackerberg & Phillips
(1972), and following the arguments proposed by these authors (regarding the proper
restriction of the argument of the Airy function to ensure decay), we must have
arg(λ) = −7π/4.

The solution for ψ̂1(σ) can be written

ψ̂ = B

[
Gi(ζ̂)− Ai(ζ̂)Gi(ζ̂0)

Ai(ζ̂0)

]
. (A 17)

The analysis may be continued, with, in general g(ξ̂) ∼ ξ̂r (see Appendix A of
Goldstein 1983, and Duck 1991 for an analogous calculation), but the key result here
is the super-exponential decay with ξ; the primary difference with the two-dimensional
context, however, is the slow (algebraic) decay of ψ̂1 (and hence also û1) with σ.
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